Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
2.
bioRxiv ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38496581

RESUMO

One of the most important properties of human embryonic stem cells (hESCs) is related to their pluripotent states. In our recent study, we identified a previously unrecognized pluripotent state induced by RSeT medium. This state makes primed hESCs resistant to conversion to naïve pluripotent state. In this study, we have further characterized the metabolic features in these RSeT hESCs, including metabolic gene expression, metabolomic analysis, and various functional assays. The commonly reported metabolic modes include glycolysis or both glycolysis and oxidative phosphorylation (i.e., metabolic bivalency) in pluripotent stem cells. However, besides the presence of metabolic bivalency, RSeT hESCs exhibited a unique metabolome with additional fatty acid oxidation and imbalanced nucleotide metabolism. This metabolic quadrivalency is linked to hESC growth independent of oxygen tension and restricted capacity for naïve reprogramming in these cells. Thus, this study provides new insights into pluripotent state transitions and metabolic stress-associated hPSC growth in vitro.

3.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38410444

RESUMO

One of the most important properties of human embryonic stem cells (hESCs) is related to their primed and naïve pluripotent states. Our previous meta-analysis indicates the existence of heterogeneous pluripotent states derived from diverse naïve protocols. In this study, we have characterized a commercial medium (RSeT)-based pluripotent state under various growth conditions. Notably, RSeT hESCs can circumvent hypoxic growth conditions as required by naïve hESCs, in which some RSeT cells (e.g., H1 cells) exhibit much lower single cell plating efficiency, having altered or much retarded cell growth under both normoxia and hypoxia. Evidently, hPSCs lack many transcriptomic hallmarks of naïve and formative pluripotency (a phase between naive and primed states). Integrative transcriptome analysis suggests our primed and RSeT hESCs are close to the early stage of post-implantation embryos, similar to the previously reported primary hESCs and early hESC cultures. Moreover, RSeT hESCs did not express naïve surface markers such as CD75, SUSD2, and CD130 at a significant level. Biochemically, RSeT hESCs exhibit a differential dependency of FGF2 and co-independency of both Janus kinase (JAK) and TGFß signaling in a cell-line-specific manner. Thus, RSeT hESCs represent a previously unrecognized pluripotent state downstream of formative pluripotency. Our data suggest that human naïve pluripotent potentials may be restricted in RSeT medium. Hence, this study provides new insights into pluripotent state transitions in vitro.

4.
Nat Commun ; 15(1): 907, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383456

RESUMO

Post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS) is a disabling disorder, yet the clinical phenotype is poorly defined, the pathophysiology is unknown, and no disease-modifying treatments are available. We used rigorous criteria to recruit PI-ME/CFS participants with matched controls to conduct deep phenotyping. Among the many physical and cognitive complaints, one defining feature of PI-ME/CFS was an alteration of effort preference, rather than physical or central fatigue, due to dysfunction of integrative brain regions potentially associated with central catechol pathway dysregulation, with consequences on autonomic functioning and physical conditioning. Immune profiling suggested chronic antigenic stimulation with increase in naïve and decrease in switched memory B-cells. Alterations in gene expression profiles of peripheral blood mononuclear cells and metabolic pathways were consistent with cellular phenotypic studies and demonstrated differences according to sex. Together these clinical abnormalities and biomarker differences provide unique insight into the underlying pathophysiology of PI-ME/CFS, which may guide future intervention.


Assuntos
Doenças Transmissíveis , Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Transmissíveis/metabolismo , Biomarcadores/metabolismo , Fenótipo
6.
Mol Neurodegener ; 18(1): 87, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974165

RESUMO

BACKGROUND: Progranulin (PGRN) is a lysosomal glycoprotein implicated in various neurodegenerative diseases, including frontotemporal dementia and neuronal ceroid lipofuscinosis. Over 70 mutations discovered in the GRN gene all result in reduced expression of the PGRN protein. Genetic and functional studies point toward a regulatory role for PGRN in lysosome functions. However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN deficiency on lysosomes remain unclear. METHODS: We developed multifaceted proteomic techniques to characterize the dynamic lysosomal biology in living human neurons and fixed mouse brain tissues. Using lysosome proximity labeling and immuno-purification of intact lysosomes, we characterized lysosome compositions and interactome in both human induced pluripotent stem cell (iPSC)-derived glutamatergic neurons (i3Neurons) and mouse brains. Using dynamic stable isotope labeling by amino acids in cell culture (dSILAC) proteomics, we measured global protein half-lives in human i3Neurons for the first time. RESULTS: Leveraging the multi-modal proteomics and live-cell imaging techniques, we comprehensively characterized how PGRN deficiency changes the molecular and functional landscape of neuronal lysosomes. We found that PGRN loss impairs the lysosome's degradative capacity with increased levels of v-ATPase subunits on the lysosome membrane, increased hydrolases within the lysosome, altered protein regulations related to lysosomal transport, and elevated lysosomal pH. Consistent with impairments in lysosomal function, GRN-null i3Neurons and frontotemporal dementia patient-derived i3Neurons carrying GRN mutation showed pronounced alterations in protein turnover, such as cathepsins and proteins related to supramolecular polymerization and inherited neurodegenerative diseases. CONCLUSION: This study suggested PGRN as a critical regulator of lysosomal pH and degradative capacity, which influences global proteostasis in neurons. Beyond the study of progranulin deficiency, these newly developed proteomic methods in neurons and brain tissues provided useful tools and data resources for the field to study the highly dynamic neuronal lysosome biology.


Assuntos
Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Humanos , Progranulinas/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteostase , Proteômica , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo
7.
Nat Immunol ; 24(7): 1110-1123, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248420

RESUMO

Cerebrovascular injury (CVI) is a common pathology caused by infections, injury, stroke, neurodegeneration and autoimmune disease. Rapid resolution of a CVI requires a coordinated innate immune response. In the present study, we sought mechanistic insights into how central nervous system-infiltrating monocytes program resident microglia to mediate angiogenesis and cerebrovascular repair after an intracerebral hemorrhage. In the penumbrae of human stroke brain lesions, we identified a subpopulation of microglia that express vascular endothelial growth factor A. These cells, termed 'repair-associated microglia' (RAMs), were also observed in a rodent model of CVI and coexpressed interleukin (IL)-6Ra. Cerebrovascular repair did not occur in IL-6 knockouts or in mice lacking microglial IL-6Ra expression and single-cell transcriptomic analyses revealed faulty RAM programming in the absence of IL-6 signaling. Infiltrating CCR2+ monocytes were the primary source of IL-6 after a CVI and were required to endow microglia with proliferative and proangiogenic properties. Faulty RAM programming in the absence of IL-6 or inflammatory monocytes resulted in poor cerebrovascular repair, neuronal destruction and sustained neurological deficits that were all restored via exogenous IL-6 administration. These data provide a molecular and cellular basis for how monocytes instruct microglia to repair damaged brain vasculature and promote functional recovery after injury.


Assuntos
Monócitos , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Microglia , Interleucina-6/genética , Interleucina-6/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acidente Vascular Cerebral/patologia , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL
8.
J Neurosci ; 43(19): 3582-3597, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037607

RESUMO

Regional cellular heterogeneity is a fundamental feature of the human neocortex; however, details of this heterogeneity are still undefined. We used single-nucleus RNA-sequencing to examine cell-specific transcriptional features in the dorsolateral PFC (DLPFC) and the subgenual anterior cingulate cortex (sgACC), regions implicated in major psychiatric disorders. Droplet-based nuclei-capture and library preparation were performed on replicate samples from 8 male donors without history of psychiatric or neurologic disorder. Unsupervised clustering identified major neural cell classes. Subsequent iterative clustering of neurons further revealed 20 excitatory and 22 inhibitory subclasses. Inhibitory cells were consistently more abundant in the sgACC and excitatory neuron subclusters exhibited considerable variability across brain regions. Excitatory cell subclasses also exhibited greater within-class transcriptional differences between the two regions. We used these molecular definitions to determine which cell classes might be enriched in loci carrying a genetic signal in genome-wide association studies or for differentially expressed genes in mental illness. We found that the heritable signals of psychiatric disorders were enriched in neurons and that, while the gene expression changes detected in bulk-RNA-sequencing studies were dominated by glial cells, some alterations could be identified in specific classes of excitatory and inhibitory neurons. Intriguingly, only two excitatory cell classes exhibited concomitant region-specific enrichment for both genome-wide association study loci and transcriptional dysregulation. In sum, by detailing the molecular and cellular diversity of the DLPFC and sgACC, we were able to generate hypotheses on regional and cell-specific dysfunctions that may contribute to the development of mental illness.SIGNIFICANCE STATEMENT Dysfunction of the subgenual anterior cingulate cortex has been implicated in mood disorders, particularly major depressive disorder, and the dorsolateral PFC, a subsection of the PFC involved in executive functioning, has been implicated in schizophrenia. Understanding the cellular composition of these regions is critical to elucidating the neurobiology underlying psychiatric and neurologic disorders. We studied cell type diversity of the subgenual anterior cingulate cortex and dorsolateral PFC of humans with no neuropsychiatric illness using a clustering analysis of single-nuclei RNA-sequencing data. Defining the transcriptomic profile of cellular subpopulations in these cortical regions is a first step to demystifying the cellular and molecular pathways involved in psychiatric disorders.


Assuntos
Transtorno Depressivo Maior , Córtex Pré-Frontal Dorsolateral , Humanos , Masculino , Transtorno Depressivo Maior/metabolismo , Giro do Cíngulo/metabolismo , Córtex Pré-Frontal/fisiologia , Estudo de Associação Genômica Ampla , Núcleo Solitário/metabolismo
9.
Commun Biol ; 6(1): 252, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894627

RESUMO

The underlying etiologies of seizures are highly heterogeneous and remain incompletely understood. While studying the unfolded protein response (UPR) pathways in the brain, we unexpectedly discovered that transgenic mice (XBP1s-TG) expressing spliced X-box-binding protein-1 (Xbp1s), a key effector of UPR signaling, in forebrain excitatory neurons, rapidly develop neurologic deficits, most notably recurrent spontaneous seizures. This seizure phenotype begins around 8 days after Xbp1s transgene expression is induced in XBP1s-TG mice, and by approximately 14 days post induction, the seizures evolve into status epilepticus with nearly continuous seizure activity followed by sudden death. Animal death is likely due to severe seizures because the anticonvulsant valproic acid could significantly prolong the lives of XBP1s-TG mice. Mechanistically, our gene profiling analysis indicates that compared to control mice, XBP1s-TG mice exhibit 591 differentially regulated genes (mostly upregulated) in the brain, including several GABAA receptor genes that are notably downregulated. Finally, whole-cell patch clamp analysis reveals a significant reduction in both spontaneous and tonic GABAergic inhibitory responses in Xbp1s-expressing neurons. Taken together, our findings unravel a link between XBP1s signaling and seizure occurrence.


Assuntos
Convulsões , Resposta a Proteínas não Dobradas , Animais , Camundongos , Morte Súbita , Camundongos Transgênicos , Neurônios , Convulsões/genética
10.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865171

RESUMO

Progranulin (PGRN) is a lysosomal protein implicated in various neurodegenerative diseases. Over 70 mutations discovered in the GRN gene all result in reduced expression of PGRN protein. However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN deficiency on lysosomal biology remain unclear. Here we leveraged multifaceted proteomic techniques to comprehensively characterize how PGRN deficiency changes the molecular and functional landscape of neuronal lysosomes. Using lysosome proximity labeling and immuno-purification of intact lysosomes, we characterized lysosome compositions and interactomes in both human induced pluripotent stem cell (iPSC)-derived glutamatergic neurons (i3Neurons) and mouse brains. Using dynamic stable isotope labeling by amino acids in cell culture (dSILAC) proteomics, we measured global protein half-lives in i3Neurons for the first time and characterized the impact of progranulin deficiency on neuronal proteostasis. Together, this study indicated that PGRN loss impairs the lysosome's degradative capacity with increased levels of v-ATPase subunits on the lysosome membrane, increased catabolic enzymes within the lysosome, elevated lysosomal pH, and pronounced alterations in neuron protein turnover. Collectively, these results suggested PGRN as a critical regulator of lysosomal pH and degradative capacity, which in turn influences global proteostasis in neurons. The multi-modal techniques developed here also provided useful data resources and tools to study the highly dynamic lysosome biology in neurons.

11.
Sci Adv ; 9(1): eabq6978, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598996

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Although various viruses have been proposed to contribute to MS pathology, the etiology of MS remains unknown. Since intrathecal antibody synthesis is well documented in chronic viral infection and neuroinflammatory diseases, we hypothesized whether the patterns of antigen-specific antibody responses associated with various viral exposures may define patients with CNS chronic immune dysregulation. The pan-viral antibody profiling in cerebrospinal fluid (CSF) and serum of patients with MS showed significant differences from those in healthy volunteers and a pattern of antibody responses against multiple viruses, including the previously identified Epstein-Barr virus. These findings demonstrate that virus-specific antibody signatures might be able to reflect disease-associated inflammatory milieu in CSF of subjects with neuroinflammatory diseases.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Herpesvirus Humano 4 , Doenças Neuroinflamatórias , Antivirais
12.
J Neuropathol Exp Neurol ; 81(11): 885-899, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35980299

RESUMO

von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary cancer disorder caused by a germline mutation in the VHL tumor suppressor gene. Loss of the wild-type allele results in VHL deficiency and the potential formation of cerebellar hemangioblastomas, which resemble embryonic hemangioblast proliferation and differentiation processes. Multiple, microscopic, VHL-deficient precursors, termed developmentally arrested structural elements (DASEs), consistently involve the cerebellar molecular layer in VHL patients, indicating the tumor site of origin. Unlike hemangioblastomas, however, cerebellar DASEs do not express brachyury, a mesodermal marker for hemangioblasts. In this study, neuronal progenitors occupying the molecular layer were investigated as tumor cells of origin. By immunohistochemistry, cerebellar DASEs and hemangioblastomas lacked immunoreactivity with antibody ZIC1 (Zic family member 1), a granule cell progenitor marker with concordance from oligonucleotide RNA expression array analyses. Rather, cerebellar DASEs and hemangioblastomas were immunoreactive with antibody PAX2 (paired box 2), a marker of basket/stellate cell progenitors. VHL cerebellar cortices also revealed PAX2-positive cells in Purkinje and molecular layers, resembling the histological and molecular development of basket/stellate cells in postnatal non-VHL mouse and human cerebella. These data suggest that VHL deficiency can result in the developmental arrest of basket/stellate cells in the human cerebellum and that these PAX2-positive, initiated cells await another insult or signal to form DASEs and eventually, tumors.


Assuntos
Neoplasias Cerebelares , Hemangioblastoma , Doença de von Hippel-Lindau , Animais , Camundongos , Recém-Nascido , Humanos , Hemangioblastoma/genética , Hemangioblastoma/metabolismo , Hemangioblastoma/patologia , Doença de von Hippel-Lindau/complicações , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Cerebelo/patologia , Oligonucleotídeos/metabolismo , RNA/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
14.
Sci Rep ; 12(1): 6902, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477752

RESUMO

Comprising approximately 8% of our genome, Human Endogenous RetroViruses (HERVs) represent a class of germline retroviral infections that are regulated through epigenetic modifications. In cancer cells, which often have epigenetic dysregulation, HERVs have been implicated as potential oncogenic drivers. However, their role in gliomas is not known. Given the link between HERV expression in cancer cell lines and the distinct epigenetic dysregulation in gliomas, we utilized a tailored bioinformatic pipeline to characterize and validate the glioma retrotranscriptome and correlate HERV expression with locus-specific epigenetic modifications. We identified robust overexpression of multiple HERVs in our cell lines, including a retroviral transcript, HML-6, at 19q13.43b in glioblastoma cells. HERV expression inversely correlated with loci-specific DNA methylation. HML-6 contains an intact open reading frame encoding a small envelope protein, ERVK3-1. Increased expression of ERVK3-1 in GBM patients is associated with a poor prognosis independent of IDH-mutational status. Our results suggest that not only is HML-6 uniquely overexpressed in highly invasive cell lines and tissue samples, but also its gene product, ERVK3-1, may be associated with reduced survival in GBM patients. These results may have implications for both the tumor biology of GBM and the role of ERVK3-1 as a potential therapeutic target.


Assuntos
Retrovirus Endógenos , Glioblastoma , Biologia Computacional , Metilação de DNA , Retrovirus Endógenos/genética , Glioblastoma/genética , Humanos , Fases de Leitura Aberta
15.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884829

RESUMO

Methylprednisolone (MP) is an anti-inflammatory drug approved for the treatment of acute spinal cord injuries (SCIs). However, MP administration for SCIs has become a controversial issue while the molecular effects of MP remain unexplored to date. Therefore, delineating the benefits and side effects of MP and determining what MP cannot cure in SCIs at the molecular level are urgent issues. Here, genomic profiles of the spinal cord in rats with and without injury insults, and those with and without MP treatment, were generated at 0, 2, 4, 6, 8, 12, 24, and 48 h post-injury. A comprehensive analysis was applied to obtain three distinct classes: side effect of MP (SEMP), competence of MP (CPMP), and incapability of MP (ICMP). Functional analysis using these genes suggested that MP exerts its greatest effect at 8~12 h, and the CPMP was reflected in the immune response, while SEMP suggested aspects of metabolism, such as glycolysis, and ICMP was on neurological system processes in acute SCIs. For the first time, we are able to precisely reveal responsive functions of MP in SCIs at the molecular level and provide useful solutions to avoid complications of MP in SCIs before better therapeutic drugs are available.


Assuntos
Anti-Inflamatórios/farmacologia , Metilprednisolona/farmacologia , Traumatismos da Medula Espinal/patologia , Transcriptoma/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Feminino , Metilprednisolona/uso terapêutico , Ratos , Ratos Long-Evans , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Fatores de Tempo
16.
Ann Clin Transl Neurol ; 8(11): 2184-2198, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34729958

RESUMO

OBJECTIVE: To define the transcriptomic changes responsible for the histologic alterations in skeletal muscle and their progression in collagen VI-related muscular dystrophy (COL6-RD). METHODS: COL6-RD patient muscle biopsies were stratified into three groups based on the overall level of pathologic severity considering degrees of fibrosis, muscle fiber atrophy, and fatty replacement of muscle tissue. Using microarray and RNA-Seq, we then performed global gene expression profiling on the same muscle biopsies and compared their transcriptome with age- and sex-matched controls. RESULTS: COL6-RD muscle biopsy transcriptomes as a group revealed prominent upregulation of muscle extracellular matrix component genes and the downregulation of skeletal muscle and mitochondrion-specific genes. Upregulation of the TGFß pathway was the most conspicuous change across all biopsies and was fully evident even in the mildest/earliest histological group. There was no difference in the overall transcriptional signature between the different histologic groups but polyserial analysis identified relative changes along with COL6-RD histological severity. INTERPRETATION: Overall, our study establishes the prominent dysregulation of extracellular matrix genes, TGFß signaling, and its downstream cellular pathways at the transcriptomic level in COL6-RD muscle.


Assuntos
Colágeno Tipo VI/metabolismo , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Distrofias Musculares , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Biópsia , Humanos , Análise em Microsséries , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Gravidade do Paciente , Análise de Sequência de RNA , Regulação para Cima
17.
Nature ; 597(7878): 709-714, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497421

RESUMO

Multiple sclerosis (MS) lesions that do not resolve in the months after they form harbour ongoing demyelination and axon degeneration, and are identifiable in vivo by their paramagnetic rims on MRI scans1-3. Here, to define mechanisms underlying this disabling, progressive neurodegenerative state4-6 and foster development of new therapeutic agents, we used MRI-informed single-nucleus RNA sequencing to profile the edge of demyelinated white matter lesions at various stages of inflammation. We uncovered notable glial and immune cell diversity, especially at the chronically inflamed lesion edge. We define 'microglia inflamed in MS' (MIMS) and 'astrocytes inflamed in MS', glial phenotypes that demonstrate neurodegenerative programming. The MIMS transcriptional profile overlaps with that of microglia in other neurodegenerative diseases, suggesting that primary and secondary neurodegeneration share common mechanisms and could benefit from similar therapeutic approaches. We identify complement component 1q (C1q) as a critical mediator of MIMS activation, validated immunohistochemically in MS tissue, genetically by microglia-specific C1q ablation in mice with experimental autoimmune encephalomyelitis, and therapeutically by treating chronic experimental autoimmune encephalomyelitis with C1q blockade. C1q inhibition is a potential therapeutic avenue to address chronic white matter inflammation, which could be monitored by longitudinal assessment of its dynamic biomarker, paramagnetic rim lesions, using advanced MRI methods.


Assuntos
Astrócitos/patologia , Linfócitos/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Animais , Encéfalo/patologia , Complemento C1q/antagonistas & inibidores , Complemento C1q/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Inflamação/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , RNA-Seq , Transcriptoma , Substância Branca/patologia
18.
Neuroimage Clin ; 30: 102680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34215150

RESUMO

OBJECTIVE: We sought to characterize spinal cord atrophy along the entire spinal cord in the major multiple sclerosis (MS) phenotypes, and evaluate its correlation with clinical disability. METHODS: Axial T1-weighted images were automatically reformatted at each point along the cord. Spinal cord cross-sectional area (SCCSA) were calculated from C1-T10 vertebral body levels and profile plots were compared across phenotypes. Average values from C2-3, C4-5, and T4-9 regions were compared across phenotypes and correlated with clinical scores, and then categorized as atrophic/normal based on z-scores derived from controls, to compare clinical scores between subgroups. In a subset of relapsing-remitting cases with longitudinal scans these regions were compared to change in clinical scores. RESULTS: The cross-sectional study consisted of 149 adults diagnosed with relapsing-remitting MS (RRMS), 49 with secondary-progressive MS (SPMS), 58 with primary-progressive MS (PPMS) and 48 controls. The longitudinal study included 78 RRMS cases. Compared to controls, all MS groups had smaller average regions except RRMS in T4-9 region. In all MS groups, SCCSA from all regions, particularly the cervical cord, correlated with most clinical measures. In the RRMS cohort, 22% of cases had at least one atrophic region, whereas in progressive MS the rate was almost 70%. Longitudinal analysis showed correlation between clinical disability and cervical cord thinning. CONCLUSIONS: Spinal cord atrophy was prevalent across MS phenotypes, with regional measures from the RRMS cohort and the progressive cohort, including SPMS and PPMS, being correlated with disability. Longitudinal changes in the spinal cord were documented in RRMS cases, making it a potential marker for disease progression. While cervical SCCSA correlated with most disability and progression measures, inclusion of thoracic measurements improved this correlation and allowed for better subgrouping of spinal cord phenotypes. Cord atrophy is an important and easily obtainable imaging marker of clinical and sub-clinical progression in all MS phenotypes, and such measures can play a key role in patient selection for clinical trials.


Assuntos
Medula Cervical , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Adulto , Atrofia/patologia , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Estudos Transversais , Avaliação da Deficiência , Progressão da Doença , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Fenótipo , Medula Espinal/patologia
19.
Sci Rep ; 11(1): 12893, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145313

RESUMO

Atypical Teratoid Rhabdoid Tumor (AT/RT) is a rare pediatric central nervous system cancer often characterized by deletion or mutation of SMARCB1, a tumor suppressor gene. In this study, we found that SMARCB1 regulates Human Endogenous Retrovirus K (HERV-K, subtype HML-2) expression. HML-2 is a repetitive element scattered throughout the human genome, encoding several intact viral proteins that have been associated with stem cell maintenance and tumorigenesis. We found HML-2 env expression in both the intracellular and extracellular compartments in all AT/RT cell lines (n = 4) and in 95% of AT/RT patient tissues (n = 37) evaluated. SMARCB1 knock-down in neural stem cells (NSCs) led to an upregulation of HML-2 transcription. We found that SMARCB1 binds adjacent to the HML-2 promoter, repressing its transcription via chromatin immunoprecipitation; restoration of SMARCB1 expression in AT/RT cell lines significantly downregulated HML-2 expression. Further, targeted downregulation of HML-2 transcription via CRISPR-dCas9 coupled with suppressor proteins led to cellular dispersion, decreased proliferation, and cell death in vitro. HML-2 knock-down with shRNA, siRNA, and CRISPR-dCas9 significantly decreased Ras expression as measured by qRT-PCR, suggesting that HML-2 modulates MAPK/ERK signaling in AT/RT cells. Overexpression of NRAS was sufficient to restore cellular proliferation, and MYC, a transcription factor downstream of NRAS, was bound to the HERV-K LTR significantly more in the absence of SMARCB1 expression in AT/RT cells. We show a mechanism by which these undifferentiated tumors remain pluripotent, and we demonstrate that their formation is aided by aberrant HML-2 activation, which is dependent on SMARCB1 and its interaction with MYC.


Assuntos
Transformação Celular Neoplásica/genética , Retrovirus Endógenos/genética , Tumor Rabdoide/etiologia , Tumor Rabdoide/patologia , Proteína SMARCB1/deficiência , Deleção de Sequência , Ativação Viral/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células , Micropartículas Derivadas de Células/metabolismo , Suscetibilidade a Doenças , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Sequências Repetitivas de Ácido Nucleico , Transdução de Sinais
20.
PLoS One ; 16(5): e0251461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33984026

RESUMO

The ground or naive pluripotent state of human pluripotent stem cells (hPSCs), which was initially established in mouse embryonic stem cells (mESCs), is an emerging and tentative concept. To verify this vital concept in hPSCs, we performed a multivariate meta-analysis of major hPSC datasets via the combined analytic powers of percentile normalization, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and SC3 consensus clustering. This robust bioinformatics approach has significantly improved the predictive values of our meta-analysis. Accordingly, we revealed various similarities or dissimilarities between some naive-like hPSCs (NLPs) generated from different laboratories. Our analysis confirms some previous studies and provides new evidence concerning the existence of three distinct naive-like pluripotent states. Moreover, our study offers global transcriptomic markers that define diverse pluripotent states under various hPSC growth protocols.


Assuntos
Genômica/métodos , Células-Tronco Pluripotentes/metabolismo , Transcriptoma , Diferenciação Celular , Proliferação de Células , Humanos , Células-Tronco Pluripotentes/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...